Math 217 Fall 2025 Quiz 15 – Solutions

Dr. Samir Donmazov

- 1. Complete* the partial sentences below into precise definitions for, or precise mathematical characterizations of, the italicized term:
 - (a) Suppose V and W are vector spaces and $T:V\to W$ is a linear transformation. The kernel of T is . . .

Solution: The set of vectors in V that T sends to the zero vector of W:

$$\ker T = \{ v \in V : T(v) = 0_W \}.$$

(b) An isomorphism of vector spaces is ...

Solution: A bijective linear transformation. Equivalently, a linear map $T: V \to W$ that has a (necessarily linear) inverse $T^{-1}: W \to V$. If such a map exists, we say V and W are isomorphic and write $V \cong W$.

(c) To say that a list of vectors (x_1, x_2, \ldots, x_d) in a vector space X is *linearly dependent* means \ldots

Solution: There exist scalars a_1, \ldots, a_d , not all zero, such that

$$a_1x_1 + \dots + a_dx_d = 0_X.$$

2. Let V and W be vector spaces, and suppose $T:V\to W$ is a linear transformation of vector spaces with the same (finite) dimension. Show that T is surjective if and only if T is injective.

Solution: Suppose $n = \dim V = \dim W < \infty$. By the Rank-Nullity Theorem,

$$\dim V = \dim \ker(T) + \dim \ker(T) = n.$$

If T is injective, then $\dim \ker(T) = 0$, so $\dim \operatorname{im}(T) = n$. Hence the image of T is an n-dimensional subspace of W; since $\dim W = n$, the image must equal W, i.e., T is surjective.

Conversely, if T is surjective, then $\dim \operatorname{im}(T) = \dim W = n$, so $\dim \ker(T) = n - \dim \operatorname{im}(T) = 0$. Thus the kernel is $\{0\}$ and T is injective.

^{*}For full credit, please write out fully what you mean instead of using shorthand phrases.

- 3. True or False. If you answer true, then state TRUE. If you answer false, then state FALSE. Justify your answer with either a short proof or an explicit counterexample.
 - (a) The zero vector is a basis for the vector space $\{\vec{0}\}$.

Solution: FALSE. A basis must be linearly independent. The singleton $\{0\}$ is linearly dependent because $1 \cdot 0 = 0$ with a nonzero coefficient. The correct basis for 0 is the empty set, which is linearly independent and spans 0.

(b) The kernel of the trace map from $\mathbb{R}^{n\times n}$ to \mathbb{R} has dimension n^2-n .

Solution: FALSE. The trace map tr: $M_n(\mathbb{R}) \to \mathbb{R}$ is linear and nonzero, so dim im(tr) = 1. By Rank–Nullity,

$$\dim \ker(\operatorname{tr}) = \dim M_n(\mathbb{R}) - \dim \operatorname{im}(\operatorname{tr}) = n^2 - 1,$$

not $n^2 - n$. Indeed, $\ker(\operatorname{tr}) = \{A \in M_n(\mathbb{R}) : \operatorname{tr}(A) = 0\}$ is an $(n^2 - 1)$ -dimensional subspace of $\mathbb{R}^{n \times n}$.